Hepatotoxic and Nephrotoxic Effects of Acetaminophen in New-Born and Adult Rats Comparatively

Mukaddes Eşrefoğlu, M D, PhD*, Mukadder Ayşe Selimoğlu, M D**, M. Akif Çiftcioğlu, M D, PhD***, Akçahan Gepdiremen, M D, PhD****, Mehmet Parlak, M D*****

This study was planned to demonstrate acetaminophen hepatotoxicity and nephrotoxicity in new-born and adult rats comparatively. Ten newborn and ten adult male Wistar albino rats were used and in each group four rats were administered 300mg/kg and four 500mg/kg acetaminophen intraperitoneally. Spontaneous death was not observed; after 8 hours the animals were killed by decapitation. Liver and kidney sections were stained with hematoxylin and eosin. In newborn rats at 300mg/kg dose small number of necrotic cells were observed and all the animals at 500mg/kg dose developed mild centrilocular hepatic necrosis, whereas in adult rats at 300mg/kg dose moderate and at 500mg/kg dose severe centrilocular hepatic necrosis was observed.

The severity of the renal injury was not different at 300mg/kg and 500mg/kg acetaminophen group in adult and new-born rats. This toxicity was not dose-dependent and age-dependent. In all groups, there was severe acute tubular necrosis.

Key words: Acetaminophen, hepatotoxicity, nephrotoxicity, rat, newborn

Asetaminofen hepatotoksitesisinin ve nefrotoksitesisinin yenidoğan ve erişkin çıkanlarda karşılaştırılması olarak incelenmesi

Bu çalışma asetaminofen hepatotoksitesisini ve nefrotoksitesisini yenidoğan ve erişkin çıkanlarda karşılaştırılmaları olarak incelemek amacı ile planlandı. Çalışmada 10 erişkin ve 10 yenidoğan Wistar albino türü çıkan kullanıldı, her grupta hayvanların dördüne 300mg/kg ve dördüne de 500mg/kg asetaminofen intraperitoneal olarak uygulandı. Spontan ölüm gözlenmedi; 8 saat sonra hayvanlar öldürüldüler. Karaciğer ve böbrek kesitleri hematokslen-eozinle boyandı. 300mg/kg dozda yeni-doğan çıkanların karaciğerlerinde az sayıda nekrotik hücre izlenirken; 500mg/kg dozda bütün yeni-doğanlarda hafif sentriyolüler hepatik nekroz gözlendi. Enişkin çıkanlarda ise 300mg/kg dozda orta derecede, 500mg/kg dozda ciddi hepatik nekroz izlendi.

300 mg/kg ve 500 mg/kg asetaminofen uygulanan yeni-doğan ve enişkin çıkanlarda böbrek değişiklikleri birbirinden farklı değişildi. Böbrek toksitesi doza ve yaşa bağlı değişildi. Bütün gruplarda ciddi derecede akut tubüler nekroz izlendi.

Anahtar kelimeler:Asetaminofen, hepatotoksitesi, nefrotoksitesi, çıkan, yeni-doğan

* Atatürk University, Medical Faculty, Department of Histology and Embriology,
** Department of Pediatrics
*** Department of Pathology
**** Department of Pharmacology
***** Department of Clinical Microbiology and Infectious Diseases
The liver is central to the metabolic disposition of virtually all drugs and foreign substances(1). Like the liver, the kidney also contains active enzyme systems capable of metabolically activating drugs and other chemicals. In addition, the kidney is positioned in a primary site of exposure, since it receives a large blood supply and contains specialized transport processes for concentrating and secreting drugs(2).

Acetaminophen (APAP) is an analgesic and antipyretic which is considered safe when taken appropriately(3,4). However, following overdose, this causes severe hepatic necrosis and acute tubular necrosis(2). Damage to the liver and kidney caused by APAP is thought to be a result of the conversion of a fraction of the dose to chemically reactive metabolites which can covalently bind to cellular macromolecules(2,5).

Clinical experience suggests that if an adult consumes more than 7.5-15 g.(150 to 200mg/kg) of APAP as a single dose or a child ingests 150mg/kg of body weight hepatotoxicity may occur; doses of 20 to 25 g. or more are potentially fatal(6,7,8). It is generally accepted that children are less susceptible to APAP than adults(4,7,9).

In the present study, we have investigated the APAP toxicity in the liver and kidney comparatively at 2-week and 6-month old rats histopathologically.

RESULT

The criteria used to assess the APAP toxicity in the new-born and adult rats were based on three lines of evidence: lethality data and histopathological evidence of liver and kidney injury.

At the 300mg/kg and 500 mg/kg doses, all adult and new-born rats survived for 8 hours. But at 500mg/kg dose, adult rats were near death (moribund and shallow respiration were recorded). But at the 300mg/kg and 500 mg/kg doses, new-borns were active and no physical difference was observed.

The histopathological changes in all groups are as follows:

Liver: New-born at 300mg/kg, dose: The morphologic changes common to this group were mild cellular swelling, sinusoidal congestion and in a few area, hepatocytic vacuolation. There was small number of necrotic hepatocytes(Figure 1).

New-born at 500mg/kg dose: In this group, all the animals developed mild centrlobular hepatic necrosis. The other histopathological changes were hepatocytic vacuolation, sinusoidal congestion and mild hepatocytic fatty change(Figure 2).

Adult at 300mg/kg dose: In the liver sections, some of the lobules were morphologically deranged. Moderate centrlobular hepatic necrosis was a feature of this group. The other alterations included sinusoidal congestion and loss of sinusoidal cells(Figure 3).

Adult at 500mg/kg dose: Most of the lobules were morphologically deranged. Severe centrlobular hepatic necrosis was observed. Sinusoidal congestion and loss of sinusoidal cells...
were the other histopathological changes (Figure 4).

Kidney: The severity of the renal injury was not different at 300mg/kg and 500mg/kg APAP group in adult and new-born rats. This toxicity was not dose-dependent and age-dependent. In all groups, there was severe acute tubular necrosis in the inner zone of cortex and outer zone of the medulla (Figure 5, 6). In the inner zone of the medulla severe tubular edema was observed.

DISCUSSION

It is generally accepted that children are less susceptible to acetaminophen toxicity than are adults (4, 7, 9). In our study, at the 300mg/kg and 500mg/kg doses, all adult and new-born rats survived until decapitation. In 500mg/kg adult rats, though there was no death, moribund and shallow respiration were observed. But new-born rats were highly active and there was no sign of death clinically. Our observation is consistent with the fact that, the LD50 dose for APAP in neonatal rats is slightly higher than that observed in adult animals (11).

The histopathological criteria of the hepatic injury of APAP is centrolobular hepatic necrosis, centrolobular hepatocytic atrophy, hepatocytic vacuolation, hepatocytic fatty change, loss of sinusoidal cells, sinusoidal congestion, focal peliosis and inflammatory infiltration (8, 10, 11, 12, 13, 14). In the present study, centrolobular hepatic necrosis was a common feature found in adult rats received 300mg/kg and 500mg/kg APAP. In 500mg/kg APAP group, the severity of necrosis was higher than that of the 300mg/kg group. The other alterations including derangement of the lobules, sinusoidal congestion and loss of sinusoidal cells were more pronounced in rats receiving higher dose of APAP. Adamson et al. found that, morphologic alterations produced by APAP were more significant in animals receiving higher doses (10). APAP is metabolized by the liver primarily to sulfate and glucuronide conjugates. The hepatic mixed-function oxidase system metabolizes a small percentage of the dose to a toxic intermediate. This reactive species is normally neutralized through conjugation with reduced
glutathione, facilitated by glutathione-S-transferase. Following overdose, sulfation and glucuronidation become capacity-limited contributing to increased formation of the reactive metabolite. Subsequently, glutathione-S-transferase is depleted, and reactive metabolite then covalently bind to cellular macromolecules initiating cell death(1,3). Thus, the extend of the hepatic damage produced by APAP is dose-dependent.

In our study the range of necrosis and the other morphologic alterations were lower in newborn rats compared to adults. Thus, our study indicates that 2-week-old rats are remarkably resistant to the hepatotoxic effects of high doses of APAP when compared with older animals. Accidental ingestion of an overdose of APAP in children has not frequently been reported to produce hepatotoxic reactions, in fact, there is only a few case reports in the literature(9,15). This rarity is in contrast to the more frequent ingestion of overdoses of APAP in the adolescent age group where several reports of hepatotoxic reactions have appeared(12,16). Beierschmitt et al(3) suggested that 75% of 3-month-old mice, but only 14-29% of 1-1.5 and 2-month old mice had centriobular necrosis after a toxic dose of APAP. In all of these studies, age-related differences in APAP toxicity have been observed.

There are some theories about the mechanism why postnatal animals have less susceptibility to APAP toxicity. Young animals have higher levels of APAP covalently bound to hepatic macromolecules and excrete higher amounts of mercapturic acid conjugate compared to adult animals. These data suggests that young rats are able to metabolically activate a low dose of APAP compared to the adult animals. So the lower susceptibility of neonates appears to be due to a relative inability of the young animals to metabolically activate the drug(11,17). For many drug substrates both human and rodent neonates have poorly developed drug metabolizing systems, the activity of which increases with maturation. Hence, the young may be less affected by agents requiring metabolic activation, such as APAP(3).

Adamson et. al(10) suggested that lack of sensitivity to APAP toxicity in 2-week-old mice
must be associated with toxic events initiated by NAPQI (N-acetyl-p-benzo-quinone-imine, a reactive metabolite of APAP) formation that ultimately result in irreversible cell damage. It is likely that these toxic processes are quenched by superior defense mechanism in the postnatal liver cells. It has been shown that the activities of hepatoprotective enzymes, glutathione peroxidase and glutathione reductase were markedly higher in liver of 2-week-old mice than in adults. Therefore the higher level of these hepatoprotective enzymes would protect the liver from oxidative stress induced by APAP.

Renal effect of APAP is minor. Renal failure may uncommonly occur within major overdose of APAP(18). The greater the ingested dose, the greater the degree of hepatic necrosis and the higher the probability of acute renal failure. In addition to characteristic and sometimes fatal hepatic necrosis which occurs in man following massive APAP ingestion, a significant proportion of individuals also develop acute renal failure. This development occurs most commonly in patients with extensive liver damage, but moderate to severe renal impairment may also occur in patients with little evidence of hepatic injury(19). Fisher et. al.(5) showed that concentrations of APAP and certain of its conjugates reach high levels in plasma, liver and kidney after a toxic dose. The renal lesion of APAP is acute tubular necrosis. The other described renal alterations include tubular edema, dilatation and degeneration of tubular epithelium. Recent studies have confirmed that APAP is concentrated in the outer renal medulla (2,16,20). Joshi et al.(16) found that cortical binding of APAP is significantly less than medullary binding even at the highest concentration of APAP. We observed severe tubular necrosis in the inner zone of the cortex and outer zone of the medulla tubular edema in the inner zone of the medulla in both new-born and adult rats and. McMurtry et al(19) observed severe tubular necrosis in the combined areas of the renal cortex and subcortical zone of medulla in the kidney of Fisher rats.

For we observed severe nephrotoxicity in both new-born and adult, but high in adult but low hepatotoxicity in new-born, we suggest that the nephrotoxic effect of APAP is more severe than its hepatotoxic effect. But previous studies noted that, renal changes produced by APAP occur after lethal doses and damage is not apparently a factor in APAP lethality since renal tubular necrosis are not observed occasionally(2,11). Green et. al.(11) recorded that APAP induced nephrotoxicity has only been observed in the Fisher rats. Mitchell et. al.(2) suggested that in animals that have high concentrations of microsomal cytochrome P-450 in their kidneys, such as male Fisher rats and certain strains of mice, acute tubular necrosis develops after the administration of single, non lethal doses of APAP. It is observed that UDP-glucuronosyl transferase deficient Gunn rats were more susceptible to APAP toxicity than Wistar rats(21). However, Trumper(22) observed renal damage both in the presence or absence of hepatic damage in male Wistar rats. This result is consistent with ours. It is shown that p-aminophenol causes necrosis of tubules in Wistar rats and its nephrotoxicity may due to glutathione-dependent bioactivation reaction(23). Enhanced susceptibility of some species of rats to APAP toxicity is due to decreased glucuronidation resulting in enhanced bioactivation rather than appreciated genetic differences(21). In addition, both age and strain-related differences in APAP nephrotoxicity could be related to differences in the relative quantity of p-aminophenol generated from APAP by rat kidneys(20). Tarloff et al(24) recorded that APAP induced nephrotoxicity is age dependent in male Sprague-Dawley rats. But we did not observe an age-dependent difference in APAP nephrotoxicity, because there was severe nephrotoxicity in both new-born and adult Wistar Albino rats.

We concluded that newborn rats had low susceptibility to APAP hepatotoxicity compared to adults, but nephrotoxicity rates of all groups were similar. Absence of biochemical evidence of renal damage in spite of histopathological findings suggested that the renal damage after toxic doses of APAP is not as rare as known. Since death due to renal failure after APAP exposure is an uncommon event, we speculated that this renal damage probably is reversible. To evaluate these effects of APAP, further investigations on different species with long-term follow-up are required.
REFERENCES

Address for correspondence:
Mukaddes Esrefoglu
Ataturk Universitesi Tip Fakultesi
Histoloji ve Embriyoloji ABD, 25240
Erzurum
Tel: 0 442 2331122/2024